

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 262 (2003) 432-436

www.elsevier.com/locate/jmmm

Crystallographic, magnetic and calorimetric studies of Ho₅Si₂Ge₂

N.P. Thuy^{a,b,*}, Y.Y. Chen^c, Y.D. Yao^c, C.R. Wang^c, S.H. Lin^c, J.C. Ho^{c,d}, T.P. Nguyen^e, P.D. Thang^{b,f}, J.C.P. Klaasse^f, N.T. Hien^{a,b}, L.T. Tai^{a,b}

^a Cryogenic Laboratory, College of Natural Science, VNU, Nguyen Trai 334, Hanoi, Viet Nam ^b International Training Institute for Materials Science (ITIMS), Doi hoc bach khoa, 1 Dai Co Viet, Hanoi, Viet Nam ^c Institute of Physics, Academia Sinica, Taipei, Taiwan ^d Wichita State University, Wichita, Kansas, USA ^e Institut des Matériaux de Nantes Jean Rouxel, Université de Nantes, France ^f Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, The Netherlands

Abstract

Following the discovery of a giant magnetocaloric effect in Gd₅(Si,Ge)₄, attention has been extended to R₅(Si,Ge)₄ with R being other rare-earth elements. In this work, X-ray structural analyses, low- and high-field magnetization measurements and zero-field calorimetric measurements were carried out on Ho₅Si₂Ge₂. Specific heat data were also obtained for nonmagnetic Lu₅Si₂Ge₂ as a reference material. In contrast to the general trend of having a ferromagnetic order in the R₅(Si,Ge)₄ series, Ho₅Si₂Ge₂ actually becomes antiferromagnetically ordered with a Néel temperature T_N near 25 K. Moreover, an anomalous behavior below T_N also prevails in the temperature dependence of both magnetization and specific heat, suggesting further transitions from the antiferromagnetic to other complex magnetic structures.

© 2003 Elsevier Science B.V. All rights reserved.

PACS: 71.20.Lp; 75.30.Sg; 75.50.Ee

Keywords: Specific heat; Antiferromagnetic ordering; Crystallographic structure; Magnetic structure

1. Introduction

Since the discovery of a giant magnetocaloric effect (GMCE) in $Gd_5Si_2Ge_2$ [1,2], this compound has taken the central stage of research activities on magnetic refrigeration materials. A preliminary study on the $R_5Si_2Ge_2$ series with other rare earths

(R) completely replacing Gd revealed quite interesting magnetic ordering phenomena. It has been shown that, similar to $Gd_5(Si,Ge)_4$, Tb-based compounds also undergo ferromagnetic transitions with T_c near room temperature, along with a GMCE in its vicinity [3,4]. Meanwhile, other Rbased compounds order at lower temperatures and show complex magnetic structures [3]. As an extension of this line of research, we report here on crystallographic, magnetic and calorimetric studies of $Ho_5Si_2Ge_2$. To delineate the thermal

^{*}Corresponding author. Tel.: +84-4-8692518; fax: +84-4-8692963.

E-mail address: thuy@itims.edu.vn (N.P. Thuy).

^{0304-8853/03/\$ -} see front matter \odot 2003 Elsevier Science B.V. All rights reserved. doi:10.1016/S0304-8853(03)00074-X

property into lattice and magnetic contributions, calorimetric measurements were also made on $Lu_5Si_2Ge_2$ as a nonmagnetic reference.

2. Experimental

The Ho₅Si₂Ge₂ and Lu₅Si₂Ge₂ samples were prepared by arc-melting a stoichiometric mixture of Ho/Lu (3 N), Si (5 N) and Ge (4 N) in a pure Ar atmosphere. The resulting ingots were turned over and remelted several times to ensure sample homogeneity. The overall weight loss was less than 0.6%. Whereas the as-melted Lu₅Si₂Ge₂ ingot was directly used for measurements, the Ho₅Si₂Ge₂ ingot was further sealed in a quartz ampoule with pure Ar atmosphere and annealed for 7 days at 1000°C, followed by water quenching. The crystallographic structure and the sample quality were studied using X-ray diffraction and electron probe microanalysis (EPMA). The magnetic properties of Ho₅Si₂Ge₂ between 2 and 300 K were determined with a 5T SQUID magnetometer. Further magnetization measurements in high fields up to 40 T were carried out at the Amsterdam High Field Installation. The specific heat of Ho₅Si₂Ge₂ and Lu₅Si₂Ge₂ was measured in the temperature range of 0.6-40 K by using a microcalorimeter as described elsewhere [5].

3. Results and discussion

The room-temperature XRD-patterns of the Ho₅Si₂Ge₂ and Lu₅Si₂Ge₂ samples are presented in Fig. 1. For Ho₅Si₂Ge₂, the analysis indicates a single phase of the orthorhombic structure, space group Pnma, with unit cell parameters of a = 7.501 Å, b = 14.510 Å, and c = 7.599 Å. In reconfirming this by the EPMA analysis, the matrix of the EPMA image in the inset of Fig. 1 corresponds to the main phase having an exact composition of Ho₅Si_{1.6}Ge_{2.1}. The dark phase in the image represents an "impurity" phase of the composition Ho₅Si_{2.8}Ge_{1.6}, which amounts to only a few percent in volume. For Lu₅Si₂Ge₂, an orthorhombic structure was determined with

Fig. 1. Room-temperature XRD-patterns of $Ho_5Si_2Ge_2$ and $Lu_5Si_2Ge_2$ powders. The inset shows an EPMA image of the $Ho_5Si_2Ge_2$ sample.

Fig. 2. Temperature dependence of FC- and ZFC-magnetization of $Ho_5Si_2Ge_2$ in a field of 0.01 and 0.05 T.

lattice constants a = 7.386 Å, b = 14.262 Å and c = 7.456 Å.

The temperature dependence of the magnetization of Ho₅Si₂Ge₂ is given in Fig. 2. A magnetic order sets in at a much lower temperature than that in Gd₅Si₂Ge₂[1]. Judging from the occurrence of a peak in the figure, the transition is of an antiferromagnetic type. The peak corresponding to the Néel temperature, $T_N \approx 25$ K, is nearly unchanged with increasing applied field. The susceptibility shown in Fig. 3 follows a Curie– Weiss relation $\chi = C/(T - \theta)$ with a paramagnetic Curie temperature $\theta = 17$ K. The effective Ho-

Fig. 3. Temperature dependence of the inverse susceptibility, as calculated from the magnetization data in Fig. 2, of $Ho_5Si_2Ge_2$ in a field of 0.01 T. The inset shows a split between FC- and ZFC-data at the low-temperature region.

moment derived from these data is $9.7 \mu_{\rm B}$, compared with $g_J [J(J+1)]^{1/2} \mu_{\rm B} = 10.60 \,\mu_{\rm B}$ for free Ho³⁺. Also revealed in the inset of Fig. 3 is a split of the temperature dependence of the inverse susceptibility between the zero-field-cooled (ZFC) and field-cooled (FC) curves at T = 15 K, as well as an anomaly near 2 K.

Below the Néel temperature, magnetization data at different temperatures in low fields up to 5 T in Fig. 4 exhibit a metamagnetic transition. As can be seen in the inset showing the field dependence of the susceptibility, the critical field decreases with increasing temperature. The metamagnetic transition might be related to a field-induced transformation from the antiferromagnetic to some other magnetic configurations yet to be identified. This appears to be consistent with the magnetization data at 4.2 K in high fields up to 38 T in Fig. 5. They approach saturation very slowly, suggesting a quite large magneto-crystalline anisotropy and/ or a complex ordered spin structure at low temperatures. By extrapolating the magnetization data to an infinite field based on $M = M_s + aH^{-1}$, the saturation magnetization moment at 4.2 K is estimated to be $10.18 \,\mu_B$ per Ho³⁺ ion. This is in good agreement with the theoretical value of $g_J J = 10 \,\mu_B$. Data not shown here from magnetic hysteresis loop measurements at different temperatures below T_N gave negligible coercivity values.

Fig. 4. Low-field magnetization of $Ho_5Si_2Ge_2$ as a function of field at different temperatures below T_N . The inset shows the field dependence of the susceptibility as extracted from the corresponding magnetization curves.

Fig. 5. High-field magnetization of $Ho_5Si_2Ge_2$ as a function of field at 4.2 K.

Figs. 6 and 7 present specific heat data in terms of the temperature dependence of C and C/T for Ho₅Si₂Ge₂ and Lu₅Si₂Ge₂, respectively. The smooth and monotonically increasing values for nonmagnetic Lu₅Si₂Ge₂ in Fig. 7 are fitted to a polynomial function, which is then assumed to represent the lattice component to the measured specific heat of Ho₅Si₂Ge₂. The difference of these plots represents the expected magnetic contributions, at least for temperatures above 5 K, below which C/T rises steeply as part of a nuclear Schottky term as observed in holmium [6] and Hobased compounds [7].

Fig. 6. Temperature dependence of the specific heat of Ho₅-Si₂Ge₂ and Lu₅Si₂Ge₂. The inset shows the lowest temperature part of the C(T) curve of Ho₅Si₂Ge₂.

Fig. 7. Temperature dependence of C/T of Ho₅Si₂Ge₂ and Lu₅Si₂Ge₂. The difference plot (open circles) represents mainly the magnetic contributions above 5 K and a nuclear Schottky term at the lower temperatures for Ho₅Si₂Ge₂.

There appear to be two identifiable magnetic anomalies. In conjunction with the magnetic data in Fig. 2, the broad C/T-peak near 20 K is obviously caused by the antiferromagnetic ordering. For the second peak around 15 K, a clue can be obtained from Fig. 8, which plots the magnetic entropy of Ho₅Si₂Ge₂ above 5 K as derived by area integration of the calorimetric data in Fig. 7, $S_m(T) - S_m(5K) = \int (C_m/T) dT$. By neglecting the expectedly small value of

Fig. 8. Temperature dependence of the magnetic entropy of $Ho_5Si_2Ge_2$ above 5K.

 $S_{\rm m}(5 \text{ K})$, the magnetic entropy for Ho₅Si₂Ge₂ reaches over 60 J/mol K above $T_{\rm N}$, where the magnetic ordering could have vanished completely. In comparison, a magnetic entropy of only $5R \ln 3 = 46 \text{ J/mol K}$ is expected for a simple order–disorder process, assuming a ground state triplet of Ho³⁺ ions. Under this consideration, the nature of the second anomaly at 15 K is difficult to establish. The entropy change points in a direction of more states involved than only the triplet ground state, complicating the magnetic phase diagram.

In conclusion, both magnetic and calorimetric measurements on $Ho_5Si_2Ge_2$ reveal an antiferromagnetic ordering at 25 K, followed by a second phase transition at 15 K of so far unknown nature. Further studies such as neutron diffraction and specific heat measurements in magnetic field are necessary to clarify the magnetic structure of both phases below 25 K.

Acknowledgements

This work is partly supported by the Vietnam National University, Hanoi, under Research Grants No. QGTD 00.01 and the National Research Council, Republic of China, under Grants No. NSC90-2112-M-001-055.

References

- [1] V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78 (1997) 4494.
- [2] V.K. Pecharsky, K.A. Gschneidner Jr., Appl. Phys. Lett. 70 (1997) 3200.
- [3] N.P. Thuy, L.T. Tai, N.T. Hien, N.V. Nong, T.Q. Vinh, P.D. Thang, T.P. Nguyen, P. Molinié, in: Y.D. Yao, H.Y. Cheng, C.S. Chang, S.F. Lee (Eds.), Proceedings of the Eighth Asia-Pacific Physics

Conference, APPC2000, World Scientific, Singapore, 2001, p. 354.

- [4] N.P. Thuy, N.V. Nong, N.T. Hien, L.T. Tai, T.Q. Vinh, P.D. Thang, E. Bruck, J. Magn. Magn. Mater. 242–245 (2002) 814.
- [5] Y.Y. Chen, Y.D. Yao, Y.S. Lin, C.L. Chang, H.H. Hamdeh, J.C. Ho, Phys. Rev. B 61 (2000) 58.
- [6] O.V. Lounasmaa, Phys. Rev. 128 (1962) 1136.
- [7] K.N. Yang, S.E. Lambert, M.B. Maple, H.C. Ku, J. Low Temp. Phys. 70 (1988) 191.